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SUMMARY

A general method for maximum-likelihood estimation of familial cor-
relations from pedigree data is presented. The method is applicable to
any type of data structure, including pedigrees in which variable num-
bers of individuals are present within classes of relatives, data in
which multiple phenotypic measures are obtained on each individual,
and multiple group analyses in which some correlations are equated
across groups. The method is applied to data on high-density lipopro-
tein cholesterol and total cholesterol levels obtained from participants
in the Swedish Twin Family Study. Results indicate that there is
strong familial resemblance for both traits but little cross-trait resem-
blance.

INTRODUCTION

Correlations among relatives are often used to measure the degree of familial
aggregation of a certain trait such as cholesterol. Information regarding the
genetic and environmental sources of familial resemblance is provided by such
correlations. Familial correlations can be of several types: (1) correlations
between classes of relatives on the same variable, such as correlations between
cholesterol levels of two spouses or of a parent and child, (2) correlations
between multiple members of the same class of relatives on the same variable,
such as the sibling cholesterol correlation, (3) correlations between classes of
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relatives on different variables measured in each class, such as the correlation
between cholesterol in a parent and high-density lipoprotein cholesterol (HDL)
in a child, (4) correlations between members of the same class on different
variables measured on each member, such as the correlation between choles-
terol in a child and HDL in a sibling, and (5) correlations between two different
variables measured on the same individual.

In most applications, pedigrees are not of uniform size. In 2-generational
nuclear families, the sibship size can vary, and in extended pedigrees there is
even greater variation among family configurations. Consequently, conven-
tional ways of computing interclass and intraclass correlations are not readily
applicable with family data.

Estimation of correlations in complex pedigrees has thus far been addressed
only for specific situations. Maximum-likelihood methods have been developed
for (1) the estimation of interclass correlations when a single observation is
obtained on one class, such as a single parent, and multiple observations are
obtained on a second class, such as children (Rosner 1979); (2) simultaneous
estimation of 16 correlations from nuclear families in which a measure of the
phenotype and an index of the environment are obtained on each individual
(Rao et al. 1979); (3) the general case of interclass correlation when a variable
number of observations occur in each class, such as one or both parents and
varying sibship size in the offspring (Rao et al. 1979; Rosner 1982); (4) in-
traclass correlation within a class of varying size (Donner and Koval 1980); and
(5) a sequential method for estimating familial interclass and intraclass correla-
tions (Rao et al. 1982).

In this report, a general method is presented for obtaining maximum-
likelihood estimates of familial correlations from quantitative data on pedi-
grees. The method can be used to estimate familial correlations either directly
or as functions of the parameters of a hypothesized model of familial resem-
blance-for example, a model of genetic and cultural transmission with assor-
tative mating in nuclear families. Furthermore, the method is sufficiently gen-
eral to be applied to the analysis of any family configuration for which data are
obtained on any number of phenotypic measures for each individual. Thus, all
previous approaches to the maximum-likelihood estimation of familial correla-
tions are special cases of this general method.

METHODS

For simplicity, the method is developed first for the univariate case, in which
one phenotypic measure is obtained on each individual. It is assumed that the
data are suitably adjusted for the effects of concomitant variables such as age
and sex prior to applying this methodology. Consider the ith of N randomly
sampled pedigrees. Let the column vector of adjusted phenotypes, one on each
individual, be denoted by the vector xi, where xijk denotes the phenotypic
measure obtained on the kth individual in thejth group of the ith pedigree. The
jth group (j = 1, 2, . . . , ni) is a class of relatives within a pedigree having an
intraclass structure-for example, in a nuclear family j = 1 may indicate the
father, j = 2 the mother, and j = 3 all offspring. The number of individuals
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within a group (k = 1, 2, . . . , sij) can vary among groups as well as among
family units; in the above example, sil for fathers and Si2 for mothers can equal
0 or 1, and si3 indicates the number of offspring in family i. Assume that xi
follows a multivariate normal distribution Np,(Li, 1i) with the dimensionality of
xi defined as

ni

Pi= > Si
j=1

The column vector ,i contains subvectors of means for each group (>il, ILi2,
* ,* ,,,in.), where each subvector is of dimension sij (j = 1, 2, . .. , ni) and the
means for all individuals within a group are all assumed to be equal-for
example, all elements of 1uij are equal. It is further assumed that, within a
group, all individual observations have the same variance and all pairwise
observations have the same correlation (i.e., intraclass structure). Likewise, it
is assumed that correlations between pairs of observations, one from each of
two groups, are equal for all pairs from the two groups (i.e., interclass struc-
ture). Thus, the correlational structure is intraclass within groups and interclass
between groups. The variance-covariance matrix Zi is defined as aiRiai, where
ri is a (pi x pi) diagonal matrix of SDs in which the first sil diagonal elements
consist of the SD for group 1, the next Si2 elements are the SD for group 2, and
so on. The matrix Ri is a correlation matrix consisting of n,2 submatrices of
dimension (sij x sik; j = 1, 2, . . . , ni; k = 1, 2, . . ., ni), where the diagonal
submatrices contain intraclass correlations within groups and the off-diagonal
submatrices consist of interclass correlations between groups.
The log likelihood for the ith family is given by

lnL= - 1/2[InI~iI + (xi - i4d71i-l(xi- ,Ji)] + constant

where 11ij is the determinant, li- 1 is the inverse of Xi, and (xi - ~,i) is a column
vector of deviations of the observed data from the group means for each obser-
vation in the ith family. The overall log likelihood for N families is

N

In L = In Li
1= 1

Although the correlations in the overall R matrix can be estimated directly
using this method, it is sometimes useful to express the correlations as func-
tions of parameters under a hypothesized model for the sources of familial
resemblance, such as a model of genetic and cultural transmission and assorta-
tive mating (see, e.g., Rao et al. 1982). Maximum-likelihood estimates of the
parameters (the vector 0 of model parameters or the correlations R in addition
to the means and variances) can then be obtained by numerically maximizing
the log likelihood (e.g., Kaplan and Elston 1972; Lalouel 1979) with respect to
the parameters.
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When correlations are estimated directly, the maximum number of unknown
parameters is n means, n variances, n intraclass correlations, and n(n - 1)/2
interclass correlations, for a maximum total of n(n + 5)/2, where n indicates
the maximum number of groups in any pedigree. In most applications, there are
fewer parameters to estimate than the maximum. For example, in nuclear
families there are three groups of relatives (fathers, mothers, and offspring), so
the maximum number of parameters is 12. However, there is no intraclass
correlation in the groups consisting of mothers or fathers, so there are only 10
possible parameters. Furthermore, without noticeable change in precision, the
means and variances can be fixed at their sample (i.e., moment) estimates for
the two parental groups, further reducing the number of parameters to six. In
certain situations, biological considerations would require that some of the
intraclass and/or interclass correlations be equal, reducing the number of esti-
mated parameters even further. For example, although each sibship in an ex-
tended pedigree will constitute a distinct group, one would ordinarily require
that the sibling correlation be the same in every sibship. Similar considerations
will apply to interclass correlations such as parent-child and uncle-niece.
The maximum-likelihood estimation procedure can be extended to the analy-

sis of multiple phenotypic measures obtained on each individual. This is ac-
complished by expanding the univariate formulation to an additional dimen-
sion, so that with q variables per individual, each element of the R matrix in the
univariate case becomes a (q x q) submatrix ofR in the multivariate case, each
element of p. becomes a (q x 1) vector of means, and each diagonal element of
cr is reformulated as a diagonal submatrix containing q SDs (one for each
phenotype within the group).
When multiple phenotypic measures are analyzed, in addition to estimates of

interclass and intraclass correlations for each phenotype, the following types of
cross-correlations are estimated: correlations between groups of relatives on
different phenotypes, correlations between members within a group on differ-
ent phenotypes, and correlations among different phenotypes within individ-
uals. Therefore, there are generalized intraclass covariance structures within
groups and generalized interclass covariance structures among groups, of
which the univariate design is a special case. When all measures are standard-
ized, the generalized intraclass covariance structure within a group consists of
two components: (1) interclass correlations among measures within individuals
and (2) correlations that exist between pairs of individuals and are intraclass for
the same phenotype and interclass for different phenotypes; the first compo-
nent is the multivariate generalization of the standardized variance of unity in
the univariate case, and the second component is the multivariate generaliza-
tion of the simple intraclass correlation. Similarly, the generalized interclass
covariance structure consists of interclass correlations between individuals in
different groups on all pairwise combinations of phenotypes.
The maximum number of parameters in the general multivariate case is qn

means (where q is the number of variables and n is the maximum number of
classes), qn variances, and q2n(n + 1)/2 correlations of the following types:
nq(q + 1)/2 intraclass correlations, q2n(n - 1)/2 interclass correlations, and
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nq(q - 1)/2 self-correlations within individuals and within groups. In the bivar-
iate case for nuclear families with three groups, there is a maximum of six
means, six variances, and 24 correlations. By using sample means and vari-
ances for both variables of mothers and fathers, and because there are no
intraclass correlations in the groups consisting of mothers only or fathers only,
the number of estimated parameters is reduced to 22.

This method of maximum likelihood estimation of familial correlations has
been implemented in a FORTRAN computer program, MLECOR, which is based on
an efficient numerical optimization method (Lalouel 1979). The software is
presently being generalized to incorporate nonrandom sampling. Copies of the
program and documentation are available from the authors.

APPLICATIONS

Data on total serum cholesterol (CH) and HDL levels from the Swedish Twin
Family Study (Crumpacker et al. 1979; Dahlen et al. 1983) are analyzed here to
obtain maximum-likelihood estimates of familial correlations by using MLECOR.
The study included adult monozygotic (MZ) and dizygotic (DZ) twin pairs born
between 1911 and 1935 who were currently married and who had at least one
adult child - 18 years of age. Families of 39 male MZ, 37 female MZ, 32 male
DZ, and 30 female DZ twin pairs were included in the sample. Only the 863
individuals for whom data were available on both CH and HDL were retained
for analysis. The CH and HDL levels were determined using techniques de-
scribed elsewhere (Dahldn et al. 1983). Each phenotype was adjusted for the
effects of age, sex, and contraceptive usage as follows: Within each of five
groups (male parents, female parents, male offspring, female offspring taking
oral contraceptives, and female offspring not taking oral contraceptives), each
phenotype was regressed on up to a third-degree polynomial in age, and those
showing significant age effects were adjusted. The phenotypes were then stan-
dardized within each of the five groups. Finally, to minimize departures from
normality, each phenotype was normalized using an inverse normal transfor-
mation of the ranks (Blom 1958).

Univariate Analysis of Nuclear Families
The data for families of twins can be used to illustrate several types of

analyses. The simplest type of analysis requires splitting the families of twins
into component nuclear families, such that one member of a twin pair, his or
her spouse, and their offspring constitute one family and the co-twin, spouse,
and offspring constitute a second family. As discussed earlier, in a given family
the father alone represents the first group, the mother alone represents the
second group, and all children constitute the third group. Some families may be
devoid of data on one or more groups.

In this simple data structure, means for the father and mother (the elements
of ,ul and 1±2) are fixed at their sample values, as are the parental variances (the
square of the diagonal elements of al and C2). There are six estimated parame-
ters: the offspring mean (RD3), offspring variance (square of oD), spouse correla-
tion (element r12 in the matrix R), the father-child and mother-child correlations
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TABLE 1

HDL: ESTIMATES ± SE OF FAMILIAL CORRELATIONS, MEANS, AND VARIANCES,
USING NUCLEAR-FAMILY DATA STRUCTURE

Father Mother Child I Child 2

A. R

Father ............ ........ 1.00
Mother .................... .20 ± .06 1.00
Child 1 .................... .30 ± .05 .30 ± .05 1.00
Child 2 .................... .30 ± .05a .30 ± .05a .29 ± .09 1.00

B. p.

.01b 00'b -.04 ± .06 - .04 ± 06a

C. Variances (elements of u squared)

0.79b 1.04b 1.12 ± 0.09 1.12 ± 0.09a

a Parameter constrained to equal the corresponding parameter for child 1.
b Fixed at sample value.

(rlj and r2j, respectively, in R, wherej denotes an offspring), and sibling correla-
tion (rjk, where j and k denote two siblings).
For HDL, the maximum-likelihood estimates of the parameters are pre-

sented in table 1. Although data on all families with variable sibship sizes were
analyzed together, the parameter estimates are shown for the special case of a
two-child nuclear family, since this contains all the necessary information to
describe families of any sibship size. The results indicate that the spouse corre-
lation for HDL is .2; and the father-child, mother-child, and sibling correlations
are remarkably similar, having maximum-likelihood estimates of -.3.
Parameter estimates for CH are presented in table 2. There is no evidence for

marital resemblance for CH levels, as indicated by the estimate of zero for the
spouse correlation. The father-child (.22) and mother-child correlations (.21)
are similar in magnitude, and the sibling correlation (.28) is somewhat higher.

Multivariate Analysis of Nuclear Families
Maximum-likelihood estimates from a bivariate analysis of HDL and CH

levels in nuclear families are summarized in table 3. The estimates for each
phenotype are essentially identical to those obtained previously for the univari-
ate case. The between-phenotype estimates indicate that there are small pheno-
typic correlations in the parents but not in the offspring, and there is no evi-
dence for cross-trait spouse, parent-offspring, or sibling resemblance.

Univariate Analysis of Families of Twins
The simultaneous analysis of the families ofMZ and DZ twins provides more

information for the resolution of genetic and environmental sources of familial
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TABLE 2

CH: ESTIMATES ± SE OF FAMILIAL CORRELATIONS, MEANS, AND VARIANCES,
USING NUCLEAR-FAMILY DATA STRUCTURE

Father Mother Child 1 Child 2

A. R

Father ........... ......... 1.00
Mother .................... .00 .06 1.00
Child i .................... .22 .06 .21 ± .05 1.00
Child 2 .................... .22 .06a .21 ± .05a .28 ± .08 1.00

B. p.

.00b .00b -.01 ± .06 -.01 ± .06a

C. Variances (elements of (r squared)

0.95b 1.02b 1.01 + 0.08 1.01 ± 0.08a

a Parameter constrained to equal the corresponding parameter for child 1.
b Fixed at sample value.

resemblance and maternal effects (see, e.g., Nance et al. 1978; Williams and
Iyer 1981; McGue et al. 1985) than does the analysis of nuclear families. This
involves the simultaneous estimation of parameters in four types of families:
those having (1) male MZ twins, (2) female MZ twins, (3) male DZ twins, or (4)
female DZ twins. Since there are six groups in each type (twin 1, twin 2, spouse
of twin 1, spouse of twin 2, children of twin 1, and children of twin 2), the
maximum number of parameters is 132. However, of the 24 means and 24
variances, all but the pooled mean and variance for offspring (which require
estimation) are again fixed at the sample values. Simultaneous estimation of the
other means and variances has never given rise to visible differences either in
parameter estimates or in the likelihood values (see, e.g., Rao et al. 1984). Of
the 84 possible correlations, only 22 are nonredundant in a design in which the
twins (but not the offspring) are broken down by sex: father-child, mother-
child, sibling, MZ and DZ twin, MZ aunts and uncles, DZ aunts and uncles,
spouse of MZ aunts and uncles, spouse of DZ aunts and uncles, cousins
through MZ and DZ males and females, marital, MZ and DZ spouses of co-
twins, and spouses ofMZ and DZ twins. Consequently, only 24 parameters are
estimated.

Results for the analysis of HDL, presented in table 4 (in tabular rather than
matrix form, for simplicity), illustrate the multiple group analysis for a single
variable. The pattern of correlations indicates the existence of strong familial
resemblance for HDL. However, the data structure is too complex for ready
interpretation based on the correlation estimates alone. In a separate report,
McGue et al. (1985) analyzed these data by imposing a causal model, in which
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TABLE 4

HDL: ESTIMATES ± SE OF FAMILIAL CORRELATIONS AND MEANS AND VARIANCES,
USING FAMILIES-OF-TWINS DATA STRUCTURE

Families of Families of
PARAMETER MZ Twins DZ Twins

Correlations:
Maritala ....................... .19 ± .08 .19 ± .08
Father-offspringa ............... .27 ± .08 .27 ± .08
Mother-offspringa .............. .31 ± .07 .31 ± .07
Siblingsa ...................... .29 ± .12 .29 ± .12
Twins ......................... .72 ± .07 .38 ± .15
Cognate uncle-niece/nephew .... .31 ± .10 .20 ± .15
Cognate aunt-niece/nephew ..... .38 ± .10 .35 ± .19
Affine uncle-niece/nephew ...... .09 ± .13 .10 ± .22
Affine aunt-niece/nephew ....... .00 ± .12 .03 ± .16
Cousins through male twins ..... .43 ± .13 -.06 ± .22
Cousins through female twins ... .01 ± .15 .12 ± .28
Twin and co-twin's spouse ...... .28 ± .10 .14 ± .13
Spouses of twins ............... .05 ± .15 .20 ± .20

Means (Variances):
Male twin .................... .12 (.74) .02 ( .78)
Female twineb .................. .24 (.83) .24 (1.19)
Spouse of male twinb .-.23 (.89) -.23 (1.07)
Spouse of female twinb ......... .02 (.64) .16 (1.01)
Offspringa ..................... .01 ± .08 (1.13 ± 0.13) - .01 ± .08 (1.13 ± 0.13)

a Parameters in MZ and DZ families are constrained to be equal.
b Parameters are fixed at sample values.

the correlations are expressed in terms of the model parameters, for the
sources of familial resemblance.
The examples emphasize the general applicability of the method. The uni-

variate analysis represents the case in which variable sample size exists within
classes of relatives; the bivariate analysis of nuclear families illustrates the
estimation of correlations when multiple phenotypes are measured within indi-
viduals in each class of relatives; and the example for families with twins
illustrates a multiple group analysis, in which not all correlations within a group
are independent of those in other groups.

DISCUSSION

The maximum-likelihood estimation procedure described here enables esti-
mation of familial correlations when there is no closed-form solution, such as
when pedigrees are not all of identical structure. Although application of max-
imum-likelihood estimation to such data structures has been described as pre-
senting formidable problems (Karlin et al. 1981), the applications presented
here and elsewhere (McGue et al. 1985; Vogler et al. 1987) illustrate that the
numerical problems are not intractable. In fact, these methods were used in an
extensive simulation experiment that involved maximum-likelihood estimation
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of correlations from 18,000 separate samples of nuclear families, and in no case
did they encounter numerical problems or fail to converge (Wette et al., sub-
mitted). Not only is maximum-likelihood estimation feasible, but the estimators
of correlations, especially their z-transformations (Fisher 1921), were also
shown to have desirable asymptotic properties, including normality.
Analysis of multivariate pedigree data necessarily involves the simultaneous

estimation of many parameters, which gives rise to questions concerning the
numerical problems associated with such estimation. Although these concerns
cannot be taken lightly, it should be observed that our ability to successfully
analyze complex data structures depends on several considerations: the infor-
mation available in the data, the optimization method used, the computer facil-
ity available, and the type of model and parameterization used. Although the
number of parameters may seem daunting in multivariate analyses, the infor-
mation content also increases rapidly as the number of variables increases. For
low-order multivariate problems, this counterbalances some of the potential
problems in estimating large numbers of parameters. For example, although the
22 parameters of the bivariate application represent a substantial increase over
the six parameters in each of the two univariate analyses, the SEs of relevant
estimates are remarkably comparable in the two sets of analyses. If sample
sizes are large enough to provide sufficient power for hypothesis testing, recent
evidence indicates that multivariate analyses of the type discussed in the pres-
ent paper are not problematical. For example, a trivariate analysis of lipopro-
tein fractions in 160 nuclear families provided sufficient power to test hypoth-
eses and to estimate 31 parameters without encountering numerical difficulties
(Vogler et al. 1987). Part of this success can be attributed to the optimization
methods currently available for use. In the past, estimation of even 10 parame-
ters simultaneously was problematical, but recent optimization packages such
as GEMINI (Lalouel 1979), MAXLIK (Kaplan and Elston 1972), MINUIT (CERN
1977), and NAG (Numerical Algorithms Group 1978) have substantially im-
proved our capability for simultaneous estimation of multiple parameters. Simi-
larly, whereas in the past available computing facilities have limited the size of
the problems that we could consider, recent advances in computing hardware
are rapidly eliminating this limitation. Finally, the ability to estimate multiple
parameters depends on the type of model and parameterization used. For ex-
ample, segregation analysis of qualitative traits under a mixed model (Morton
and MacLean 1974) depends on relatively subtle properties of the data used for
resolution-and consequently might rapidly encounter numerical problems as
more parameters are added. Analysis of the covariance structure of quantita-
tive data under a multivariate normal model, as espoused in the present paper,
relies on more robust properties of the data and is less likely to encounter
numerical problems if, prior to attempting model fitting, the investigator is
careful to scrutinize the data for violations of the distributional assumptions.
Nevertheless, especially in multiparameter situations, one should make pru-
dent use of the principle of parsimony and avoid modeling for its own sake. For
example, fixing parental means and variances at sample values can consider-
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ably reduce the number of parameters to be estimated simultaneously, thus
improving numerical stability without sacrificing biologically meaningful infor-
mation. In our experience, this has never led to appreciable changes either in
parameter estimates or in likelihood values (although theoretically oriented
statisticians might object to this practice in principle).

Overall, methodological, analytical, computational, and empirical considera-
tions indicate that multiparameter multivariate analyses are feasible, within
reasonable limits. Clearly, reliability of inference will depend on the size of the
sample, the number of parameters, and the type of model used, and these
issues will determine at what point numerical difficulties become a serious
consideration. Although the analyses reported in the present paper presented
no difficulties, there is clearly a need for systematic work to provide general
guidelines on these issues.

This presentation represents a flexible framework for modeling generalized
interclass and intraclass covariance structures in pedigrees. The proposed
methodology can be readily extended or modified for other purposes. For
example, although our presentation was confined to random sampling, the
methods of Rao and Wette (in press) can be implemented for analysis of non-
randomly ascertained pedigree data. Whereas the phenotypic data were as-
sumed to be adjusted for the effects of concomitant variables (e.g., age and sex)
prior to estimation of the correlations, the means and variances may instead be
modeled as functions of the concomitant variables if desired. If the intraclass
and interclass assumptions seem to be inappropriate for particular situations,
they may be selectively relaxed. However, the methods can be used as pro-
posed to achieve certain specific objectives. For example, if sex-specific sibling
or adult-versus-pediatric-sibling correlations are desired, they can be accom-
plished by suitably defining the groups. Finally, although we did not explicitly
discuss tests of significance, likelihood-ratio tests of hypotheses can be carried
out using the proposed methodology. One may test for the significance of a
particular correlation or for the equality of several correlation coefficients.

For a particular application, the complexity of the analysis depends on the
information that one wants to extract from the data. Univariate nuclear-family
analyses quantify the magnitude of familial resemblance for one phenotype.
Multivariate nuclear-family analyses, as well as providing the same information
as univariate analyses of each phenotype separately, also illustrate the nature
of covariation among phenotypes both within and among individuals. More
complex analyses, such as those conducted using the family-of-twins design,
enable the estimation of correlations that arise from more unusual familial
relationships-such as twinship and the various aunt/uncle-niece/nephew and
cousin relationships-in addition to the basic nuclear-family correlations. Such
complex analyses are useful for testing alternate models for the sources of
familial resemblance. Thus, depending on the information to be extracted from
the data, the maximum-likelihood method can be applied to a data structure of
any complexity, within the limits of the number of parameters that can be
estimated using an iterative procedure.
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